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Abstract—Novel hapten-phosphoramidites 11a–c were prepared from 2�-deoxyuridine (2) by functionalization at the 6-position
and subsequent conjugation with adamantane, carbazole and dansyl reporter groups in good overall yield. © 2001 Elsevier
Science Ltd. All rights reserved.

The inclusion of reporter groups in synthetic oligonu-
cleotides is essential for the detection, quantification
and identification of nucleic acid target sequences as a
part of medical diagnoses or characterization of bio-
technological processes.1–3 Such reporter molecules are
a diverse group that include fluorescent4 and chemilu-
minescent species5 that can be directly measured, and
other low molecular weight compounds that facilitate
indirect detection. The latter category includes species
with high affinity receptors (biotin/avidin)6–9 and an
assortment of haptens (molecules that can be measured
by immunoassays).10 The reporter groups are con-
veniently introduced by solid-phase phosphoramidite
chemistry using both nucleoside6,9,11–14 and non-
nucleoside scaffolds.2,15 The nucleoside scaffold
approach first described by Ruth16,17 utilized an amino-
containing linker at the 5-position of deoxyuridine to
which the reporter group is attached. However, func-
tionalization of deoxyuridine at the 6-position for this
purpose has not been exploited. An explanation may lie
in the report that 6-methyl-2�-deoxyuridine lowers the
melt temperature (Tm) of some antisense oligonucle-
otides by varying degrees depending on the overall
sequence, placement within the sequence and frequency
of substitution.18,19 The authors believed that 6-Me-dU
adopted a syn conformation which was unfavorable for
Watson–Crick hydrogen bonding. In light of our suc-
cess incorporating reporter groups into oligonucleotide
probes using non-nucleoside scaffolds4,10 which also lack
Watson–Crick hydrogen bonding, and using them in
hybridization assays, we proceeded to prepare a series
of hapten-phosphoramidites (11a–c) with a common
scaffold, 6-[(2E)-N-(hexyl)prop-2-enamidyl)]-2�-deoxy-
uridine (1).

Thus, 3�- and 5�-hydroxyl groups of 2�-deoxyuridine (2)
(Scheme 1) were protected with 1,1,3,3-tetraisopropyl
disioxane-1,3-diyl (TIPDS)20,21 group to give 3, which
was then deprotonated at the 6-position using lithium
diisopropylamide and reacted with DMF in the pres-
ence of HMPA.13 The crude reaction mixture was
treated with acetic acid at −78°C to give the aldehyde
(4) in 52% yield after purification by silica-gel column
chromatography (unreacted starting material 3, could
be recovered and recycled). The aldehyde 4 was then
subjected to a Wittig reaction with methyl (tri-
phenylphosphoranylidene)acetate in benzene to afford
unsaturated ester 5 in almost quantitative yield as a
E-isomer (>98%). The next step was to exchange the
silyl protective group at the 5�-position of 5 to a 4,4�-
dimethoxytrityl group (DMT), which is compatible for
automated oligonucleotide synthesis. Thus, TIPDS pro-
tective group in 5 was hydrolyzed by treatment with
tetra-n-butylammonium fluoride in THF and the crude
product was purified by silica-gel column chromatogra-
phy to afford diol (+)-6 in excellent yield (98%). The
5�-hydroxyl group in 6 was protected as DMT ether by
treatment with 4,4�-dimethoxytrityl chloride in the pres-
ence of silver nitrate and pyridine. The crude com-* Corresponding author. E-mail: maciej.adamczyk@abbott.com
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Scheme 1.

pound was purified by silica-gel column chromatogra-
phy using EtOAc:Et3N:MeOH in 97:2:1 ratio to afford
ester 7 in 76% yield as a colorless solid (mp: 100–
101°C). The ester 7 has the required protective group
(DMT) at 5�-hydroxyl group and free 3�-hydroxy func-
tionality for introduction of 2-(cyanoethyl)-N,N-diiso-
propylphosphoramidite, which are needed for
incorporation of modified nucleotide building block
into oligonucleotide via solid-phase synthesis.

The next step in synthesis of modified nucleotide
building blocks 11a–c was to conjugate ester 7 to the
hapten reporter groups. Accordingly, adamantane, car-
bazole and dansyl reporter groups were coupled to a

C-6 linking arm containing a terminal amino function-
ality to provide 8a–c.22 The ester 7 was then subjected
to hydrolysis (Scheme 2) with lithium hydroxide in
THF–water and the resulting crude acid was conju-
gated with amines 8a–c using HOBt and EDAC in
anhydrous DMF. The conjugates 9a–c were purified by
silica-gel column chromatography in 25–53% yield.
Finally, 9a–c were treated with (2-cyanoethyl)-N,N-
diisopropylchlorophosphoramidite (10) in THF in
the presence of 4.0 equiv. of diisopropylethylamine
and the crude product was purified by preparative
reversed-phase HPLC23 to afford the phosphoramid-
ites 11a–c in 37–52% yield24 as a mixture of diastereo-
mers.

Scheme 2.
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Adamantane, carbazole and dansyl haptens (8a–c) form
highly antigenic protein conjugates that elicit selective,
high affinity antibodies.25–27 The distinctive structure of
the haptens ensures minimal cross-reactivity with
potentially interfering substances when they are used in
nucleic acid testing (NAT). The requisite hapten-phos-
phoramidites (11a–c) necessary for NAT were prepared
on a 6-[(2E)-N-(6-hexyl)prop-2-enamidyl)]-2�-deoxy-
uridine scaffold in good overall yield from 2�-deoxy-
uridine.
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